

Energy in Buildings and Communities Programme

# Comparison of IEC air cooler system and IEC water chiller system

Xiaoyun Xie Building Energy Research Center Tsinghua University, Beijing, China 2021.4.21

The support from National key research and development program of China (key projects of international cooperation in science and technology innovation) (Grant number 2019YFE0102700)

# **Main Problem**

 For the IEC cooling system to remove indoor sensible heat, choose the IEC cooling air system or IEC water chiller system, which one is better?

## IEC air cooler system and IEC water chiller system



#### For removing indoor sensible heat: For IEC air cooler system: $Q_{indoor} = G_{a,sup} c_{pa}(t_{indoor} - t_{a,sup})$ $Q_{process} = G_{a,sup} c_{pa}(t_{outdoor} - t_{a,sup})$ $= G_{a,ex}(h_{a,ex1} - h_{outdoor})$ $Q_{process} \neq Q_{indoor}$ Always $Q_{process} > Q_{indoor}$

For IEC water chiller system:

 $Q_{indoor} = G_w c_{pw}(t_{w,in} - t_{w,out})$ 

$$Q_{process} = G_w c_{pw}(t_{w,in} - t_{w,out})$$
  
=  $G_{a,in}(h_{a,ex2} - h_{outdoor})$ 

$$Q_{process} = Q_{indoor}$$

## **IEC** air coolers

Various kinds of process structures





Internal IEC coolers with one part of outlet air as secondary air



**External IEC** coolers with inlet air as secondary air



*External IEC* coolers with one part of supply air as secondary air

M-Cycle IEC air coolers

## **IEC air coolers**

| Different IEC air coolers                                                                    | Supply air<br>temperature limit                       | Ability to remove<br>indoor heat | Cooling<br>medium |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|-------------------|
| Internal cooling IEC coolers, using outdoor air as the secondary air, Fig.1.                 | t <sub>s</sub> >t <sub>wb,o</sub>                     | The lowest                       | air               |
| Internal cooling IEC coolers, using one part of the supply air as the secondary air, Fig. 2. | t <sub>dp,o</sub> <t<sub>s<t<sub>wb,o</t<sub></t<sub> | Higher                           | air               |
| External cooling IEC coolers, using outdoor air as the secondary air, Fig. 3.                | t <sub>s</sub> =t <sub>wb,o</sub> Lower               |                                  | water and air     |
| External cooling IEC coolers, using one part of the supply air as the secondary air, Fig. 4. | t <sub>s</sub> =t <sub>dp,o</sub>                     | The highest                      | air               |
| Exhaust air<br>t air<br>Supply air Inlet air                                                 | Exhau<br>Inlet air<br>Inlet air                       | st air                           | Exhaust air       |

Fig. 1

Fig. 2

Fig. 3

Fig. 4

## **IEC** water chillers

Different structures of IEC water chillers



IEC chiller II

#### Comparison between IEC air cooler system and IEC water chiller system



#### • Comparison:

- Remove the same indoor sensible heat, the demanded heat transfer area and the electricity consumption
- Through theoretical analysis
  and real cases

# **Theoretical analysis**

#### Process transformation





#### Through process transformation

- IEC air cooler system, is an IEC water chiller combined an outdoor air-water heat exchanger
- IEC water chiller system, is an IEC water chiller combined a indoor air-water heat exchanger.

#### To remove the same quantity of indoor heat:

The process produced cooling energy IEC air cooler is larger than IEC water chiller, when outdoor air is hotter than indoor air, the difference is the outdoor air heat load of IEC air cooler.

 $\Delta Q = G_{a,sup} c_{pa}(t_{outdoor} - t_{indoor})$ 

• Thus, larger heat transfer area and larger cost when using IEC air cooler to remove indoor sensible heat.

# **Theoretical analysis**

 To remove the same quantity of indoor sensible heat, comparison of NTU for each components, for IEC air cooler system and IEC water chiller system.





## **Comparison through real cases**

- **Case I**: Xinjiang Traditional Medicine Hospital (13000m<sup>2</sup>) ٠
- With fan coil units as terminals to remove sensible heat, indirect evaporative chiller to produce cold water, and • indirect evaporative fresh air handling unit to produce cooling air with humidity ratio as dry as outdoor conditions.

sensible heat

4.05



cooling air (kW)

169

88000



Indirect evaporative chiller

air fan (kW)

28.3

| Sensible<br>heat<br>removed<br>by cold<br>water (kW |                           | Electricity<br>consumption<br>of Fan of IEC<br>chiller (kW) |                                               | Electricity<br>consumption<br>of water pump<br>(kW) | Electricity<br>consumpti<br>on of Fan-<br>coils(kW) | Water system<br>COP to<br>remove<br>indoor<br>sensible heat |  |
|-----------------------------------------------------|---------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|--|
| 219                                                 |                           |                                                             | 13.8                                          | 14.9                                                | 19.2                                                | 4.6                                                         |  |
| Fr<br>su<br>(m                                      | esh air<br>Ipply<br>13/h) | S<br>re<br>C                                                | Sensible heat<br>emoved by<br>poling air (kW) | Electricity<br>consumption<br>of IEC air            | Electricity<br>consumptio<br>n of supply            | Air system<br>COP to<br>remove indoor                       |  |

cooler(kW)

13.5



15 10

8

12:30 21:20 6:10 17:20 11:00 19:50

10

7:10 18:30 3:20 12:10

4:40 13:30 22:20

Testing Date and Time (2007.7.22~7.26)

#### **Comparison through real cases**

- **Case II**: Urumqi Air Force hospital (17231.4m<sup>2</sup>)
- With radiant floor as terminals to remove sensible heat, using indirect evaporative chiller to produce cold water and indirect evaporative fresh air handling unit to produce cooling air with humidity ratio as dry as outdoor conditions.



| removed<br>by cold<br>water (kW)consumption<br>termconsumption<br>terminals<br>(kW)on of user<br>terminals<br>(kW)remove<br>indoor<br>sensible he |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>186</b> 18.7 13.4 0 5.8                                                                                                                        |

| Fresh air<br>supply<br>(m3/h) | Sensible heat<br>removed by<br>cooling air (kW) | Electricity<br>consumption<br>of IEC air<br>cooler(kW) | Electricity<br>consumptio<br>n of supply<br>air fan (kW) | Air system<br>COP to<br>remove indoor<br>sensible heat |
|-------------------------------|-------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
| 174290                        | 421                                             | 54.3                                                   | 91.5                                                     | 2.9                                                    |

#### **Comparison through real cases**

- Case III: An office building in Xinjiang province (1000m<sup>2</sup>)
- With radiant floor as terminals to remove sensible heat, using indirect evaporative chiller combined air cooler to remove indoor sensible heat and to supply demanded fresh air.



# Performance of components of IEC water chillers

#### • Pressure drop of air coolers and padding towers-tested data by ourselves

|                 |             |           |               |          | Air         | Air         |  |
|-----------------|-------------|-----------|---------------|----------|-------------|-------------|--|
| Heights of      | Electricity | Total air | Pressure drop | Total    | velocity of | velocity of |  |
| tested paddings | consumption | flow rate | of air cooler | pressure | air cooler  | paddings    |  |
| (m)             | of fan(kW)  | (m3/h)    | (Pa)          | drop(Pa) | (m/s)       | (m/s)       |  |
| 3               | 7 46        | 28840     |               | 103      | 2.0         | 2.0         |  |
| 5               | 7.40        | 20040     |               | 195      | 2.0         | 2.0         |  |
| 2.5             | 7.42        | 28880     | 87            | 183      | 2.0         | 2.0         |  |
| 2               | 7.27        | 29724     | 89            | 174      | 2.1         | 2.1         |  |
| 1.5             | 7.3         | 30256     | 91            | 165      | 2.1         | 2.1         |  |
| 1               | 7.26        | 30980     | 93            | 156      | 2.2         | 2.2         |  |
| 0.5             | 7.3         | 31160     | 96            | 149      | 2.2         | 2.2         |  |
| 0               | 7.29        | 32660     | 101           | 140      | 2.3         | 2.3         |  |



Testing instrument: Micro differential pressure gauge

For IEC water chiller with 3 meters high paddings, for the tested air velocity:

| Total pressure drop of paddings (Pa)                 | 53  |
|------------------------------------------------------|-----|
| Pressure drop of air coolers with 8 rows (Pa)        | 101 |
| Other local resistance, like air turning, et al.(Pa) | 39  |

#### Pressure drop of air coolers

| air velocity<br>(m/s) | Pressure<br>drop (Pa/row) |
|-----------------------|---------------------------|
| 2.3                   | 12.6                      |
| 2.78                  | 19                        |

## Pressure drop of paddings with 3 meters high

| air velocity<br>(m/s) | Pressure<br>drop (Pa/m) |
|-----------------------|-------------------------|
| 2.16                  | 18.8                    |
| 2.78                  | 31                      |

## **Information from manufactures**

• For pressure drop of air coolers, which is higher than our tested value

4 rows: ΔP=30.714\*V^1.593\*E^0.001 6 rows: ΔP=31.332\*V^1.663\*E^0.005 8 rows: ΔP=45.217\*V^1.66\*E^0.033

V is air face velocity, m/s E is moisture absorption coefficient;



## **Information from manufactures**

#### • For different type of paddings

| Height of<br>paddings | Air<br>velocity | Spraying density of | Air mass<br>velocity | Water<br>volumetric<br>velocity | Mass transfer<br>coefficient of<br>padding I | Mass transfer<br>coefficient of<br>padding II | Padding I | Padding I | Pressure drop<br>of padding I | Padding I | Padding II | Pressure<br>drop of<br>padding II |
|-----------------------|-----------------|---------------------|----------------------|---------------------------------|----------------------------------------------|-----------------------------------------------|-----------|-----------|-------------------------------|-----------|------------|-----------------------------------|
| (m)                   | (m/s)           | water (t/h/m2)      | g (kg/m2/s)          | q (m3/h/m2)                     | Ka (kg/m3/h)                                 | Ka(kg/m3/h)                                   | а         | m         | (Pa)                          | а         | m          | (Pa)                              |
| 1                     | 2.77            | 10                  | 3.324                | . 10                            | 23716.43772                                  | 23341.83426                                   | 1.0944    | 1.7353    | 62.90428568                   | 1.2624    | 1.9914     | 94.19334                          |
| 1.25                  | 2.77            | 10                  | 3.324                | . 10                            | 21235.89251                                  | 20248.05915                                   | 1.2704    | 2.0038    | 95.99540688                   | 1.3919    | 1.9824     | 102.908                           |
| 1.5                   | 2.77            | 10                  | 3.324                | 10                              | 18514.19988                                  | 18317.43047                                   | 1.4604    | 2.0059    | 110.588763                    | 1.4757    | 1.9894     | 109.8845                          |

# Tested mass transfer coefficient of paddings

| 风量     | 水量    | 气水比        | 进风温度  | 进风湿球  | 喷淋温度   | 出水温度   | 排风温度  | 排风相对湿 |                        | 按出水计                |
|--------|-------|------------|-------|-------|--------|--------|-------|-------|------------------------|---------------------|
| (m3/h) | (t/h) | (相同单<br>位) |       |       |        |        |       | 度(%)  | 塔板冷量<br>(kW)(水侧<br>计算) | 算的填料<br>的体积传<br>质系数 |
| 6715.8 | 9.42  | 0.86       | 24.05 | 15.18 | 27.46  | 20.45  |       |       | 76.71                  | 7138                |
| 6846.3 | 8.24  | 1          | 23.79 | 14.63 | 29.565 | 19.96  | 26.2  | 93.7  | 91.9                   | 7272                |
| 6846.3 | 8.24  | 1          | 25.05 | 13.51 | 27.32  | 18.985 | 24.77 | 93.2  | 79.75                  | 6786                |
| 6715.8 | 7.46  | 1.08       | 26.41 | 15.66 | 26.29  | 18.695 | 24.77 | 96.3  | 65.8                   | 9136                |
| 6715.8 | 8.7   | 0.93       | 24.11 | 15.19 | 28.83  | 20.31  | 26.32 | 95.5  | 86.1                   | 7576                |
| 6814.8 | 5.75  | 1.42       | 26.23 | 15.14 | 27.56  | 17.29  | 23.73 | 98.9  | 68.59                  | 9114                |
| 6814.8 | 5.75  | 1.42       | 22.45 | 15.23 | 26.24  | 17.08  |       |       | 61.18                  | 9766                |

#### Main conclusions and next step

- To remove indoor sensible heat, if outdoor air temperature is higher than indoor air temperature, always it is better to use IEC water chiller system than to use IEC air cooler system, with lower input heat transfer area and system electricity consumption.
- If outdoor air is extremely dry, the best system could be direct evaporative cooling process to produce cooling dry air, which is much simple and cheaper, with less system electricity consumption.
- Next: give the suitable zone of different IEC/DEC processes in the psychrometric chart.

# Thank you for your attentation and welcome discussions

xiexiaoyun@tsinghua.edu.cn

#### Another IEC water chiller combined air cooler







时刻(2008.5.15~5.20)